Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ophthalmic Epidemiol ; : 1-8, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2281902

RESUMEN

PURPOSE: A systematic literature review (SLR) of economic evaluations (EE) conducted for interventions to screen, treat, and manage retinopathy of prematurity (ROP) in the United States (US), United Kingdom (UK), and Canada was performed. METHODS: The SLR accessed the MEDLINE, Embase, Cochrane, Web of Science, Health Business Elite, Econ. Lit, NHS EED, and Google Scholar databases over the period 1st January 2000 to 4th August 2021. The key Medical Subject Heading (MeSH) search terms used included: Retinopathy of prematurity, Cost-effectiveness analysis, Cost-utility analysis, Cost of illness, Cost-benefit analysis, Cost minimization analysis, Incremental cost-effectiveness ratio, Quality adjusted life years, return on investment, burden of illness, disability adjusted life years, and Economic evaluation. Screening was conducted using Covidence, and the risk of bias was assessed using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist. Data extraction was performed using MS Excel. RESULTS: 1,527 articles were examined with nine (9) papers identified, one (1) from the UK; two (2) from Canada and six (6) from the US. Cost-effectiveness analysis was the main form of EE conducted (n = 5) and telemedicine screening (n = 3) was found to be highly cost-effective for ROP with the ICER values ranging from £446 to £4,240 per Quality Adjusted Life Year (QALY) in 2021 figures. 73% of included studies complied with the CHEERS checklist for EE. CONCLUSIONS: ROP screening and treatment strategies reviewed were highly cost-effective. This review may assist eye health policymakers in planning nationwide screening and treatment programs to combat vision loss and blindness due to ROP.

2.
National Institute for Health and Care Research, Southampton (UK) ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2046461

RESUMEN

BackgroundIn England, more than 4 million hospital admissions lead to surgery each year. The perioperative encounter (from initial presentation in primary care to postoperative return to function) offers potential for substantial health gains in the wider sense and over the longer term.ObjectivesThe aim was to identify, examine and set in context a range of interventions applied perioperatively to facilitate physical activity in the medium to long term.Data sourcesThe following databases were searched – Cochrane Central Register of Controlled Trials, MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, PsycINFO and SPORTDiscus in October 2020. Clinical trials databases were also searched, and backward and forward citation searches were conducted.Review methodsWe undertook a systematic review;ran database searches in October 2020;extracted data;conducted risk-of-bias assessments of studies;and used Grading of Recommendations Assessment, Development and Evaluation assessments. We conducted focus groups and interviews with people running services designed to promote physical activity, to understand the practical and contextual factors that make such interventions ‘work’. Although the two streams of work were conducted independently, we considered overlapping themes from their findings.ResultsIn the review, we found 51 randomised controlled trials and two quasi-randomised trials;nine non-randomised studies formed a supplementary data set. Studies included 8604 adults who had undergone (or were undergoing) surgery, and compared 67 interventions facilitating physical activity. Most interventions were started postoperatively and included multiple components, grouped as follows: education and advice, behavioural mechanisms and physical activity instruction. Outcomes were often measured using different tools;pooling of data was not always feasible. Compared with usual care, interventions may have slightly increased the amount of physical activity, engagement in physical activity and health-related quality of life at the study’s end (moderate-certainty evidence). We found low-certainty evidence of an increase in physical fitness and a reduction in pain, although effects generally favoured interventions. Few studies reported adherence and adverse events;certainty of these findings was very low. Although infrequently reported, participants generally provided positive feedback. For the case studies, we conducted two online focus groups and two individual interviews between November 2020 and January 2021, with nine participants from eight services of physical activity programmes. Conceptual and practical aspects included how the promotion of physical activity can be framed around the individual to recruit and retain patients;how services benefit from committed and compassionate staff;how enthusiasts, data collection and evidence play key roles;and how digital delivery could work as part of a blended approach, but inequalities in access must be considered.LimitationsOutcome measures in the review varied and, despite a large data set, not all studies could be pooled. This also limited the exploration of differences between interventions;components of interventions often overlapped between studies, and we could not always determine what ‘usual care’ involved. The case study exploration was limited by COVID-19 restrictions;we were unable to visit sites and observe practice, and the range of services in the focus groups was also limited.ConclusionsEvidence from the review indicates that interventions delivered in the perioperative setting, aimed at enhancing physical activity in the longer term, may have overall benefit. The qualitative analysis complemented these findings and indicated that interventions should be focused around the individual, delivered locally and compassionately, and promoted by a patient’s full clinical team. There is a need to develop a core outcome set for similar studies to allow quantitative syn hesis. Future work should also investigate the experiences of patients in different contexts, such as different communities, and with different surgical indications.Study registrationThis study is registered as PROSPERO CRD42019139008.FundingThis project was funded by the National Institute for Health and Care Research (NIHR) Health and Social Care Delivery Research programme and will be published in full in Health and Social Care Delivery Research;Vol. 10, No. 21. See the NIHR Journals Library website for further project information.

3.
Cochrane Database Syst Rev ; 3: CD010172, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1116499

RESUMEN

BACKGROUND: High-flow nasal cannulae (HFNC) deliver high flows of blended humidified air and oxygen via wide-bore nasal cannulae and may be useful in providing respiratory support for adults experiencing acute respiratory failure, or at risk of acute respiratory failure, in the intensive care unit (ICU). This is an update of an earlier version of the review. OBJECTIVES: To assess the effectiveness of HFNC compared to standard oxygen therapy, or non-invasive ventilation (NIV) or non-invasive positive pressure ventilation (NIPPV), for respiratory support in adults in the ICU. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, CINAHL, Web of Science, and the Cochrane COVID-19 Register (17 April 2020), clinical trial registers (6 April 2020) and conducted forward and backward citation searches. SELECTION CRITERIA: We included randomized controlled studies (RCTs) with a parallel-group or cross-over design comparing HFNC use versus other types of non-invasive respiratory support (standard oxygen therapy via nasal cannulae or mask; or NIV or NIPPV which included continuous positive airway pressure and bilevel positive airway pressure) in adults admitted to the ICU. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures as expected by Cochrane. MAIN RESULTS: We included 31 studies (22 parallel-group and nine cross-over designs) with 5136 participants; this update included 20 new studies. Twenty-one studies compared HFNC with standard oxygen therapy, and 13 compared HFNC with NIV or NIPPV; three studies included both comparisons. We found 51 ongoing studies (estimated 12,807 participants), and 19 studies awaiting classification for which we could not ascertain study eligibility information. In 18 studies, treatment was initiated after extubation. In the remaining studies, participants were not previously mechanically ventilated. HFNC versus standard oxygen therapy HFNC may lead to less treatment failure as indicated by escalation to alternative types of oxygen therapy (risk ratio (RR) 0.62, 95% confidence interval (CI) 0.45 to 0.86; 15 studies, 3044 participants; low-certainty evidence). HFNC probably makes little or no difference in mortality when compared with standard oxygen therapy (RR 0.96, 95% CI 0.82 to 1.11; 11 studies, 2673 participants; moderate-certainty evidence). HFNC probably results in little or no difference to cases of pneumonia (RR 0.72, 95% CI 0.48 to 1.09; 4 studies, 1057 participants; moderate-certainty evidence), and we were uncertain of its effect on nasal mucosa or skin trauma (RR 3.66, 95% CI 0.43 to 31.48; 2 studies, 617 participants; very low-certainty evidence). We found low-certainty evidence that HFNC may make little or no difference to the length of ICU stay according to the type of respiratory support used (MD 0.12 days, 95% CI -0.03 to 0.27; 7 studies, 1014 participants). We are uncertain whether HFNC made any difference to the ratio of partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2) within 24 hours of treatment (MD 10.34 mmHg, 95% CI -17.31 to 38; 5 studies, 600 participants; very low-certainty evidence). We are uncertain whether HFNC made any difference to short-term comfort (MD 0.31, 95% CI -0.60 to 1.22; 4 studies, 662 participants, very low-certainty evidence), or to long-term comfort (MD 0.59, 95% CI -2.29 to 3.47; 2 studies, 445 participants, very low-certainty evidence). HFNC versus NIV or NIPPV We found no evidence of a difference between groups in treatment failure when HFNC were used post-extubation or without prior use of mechanical ventilation (RR 0.98, 95% CI 0.78 to 1.22; 5 studies, 1758 participants; low-certainty evidence), or in-hospital mortality (RR 0.92, 95% CI 0.64 to 1.31; 5 studies, 1758 participants; low-certainty evidence). We are very uncertain about the effect of using HFNC on incidence of pneumonia (RR 0.51, 95% CI 0.17 to 1.52; 3 studies, 1750 participants; very low-certainty evidence), and HFNC may result in little or no difference to barotrauma (RR 1.15, 95% CI 0.42 to 3.14; 1 study, 830 participants; low-certainty evidence). HFNC may make little or no difference to the length of ICU stay (MD -0.72 days, 95% CI -2.85 to 1.42; 2 studies, 246 participants; low-certainty evidence). The ratio of PaO2/FiO2 may be lower up to 24 hours with HFNC use (MD -58.10 mmHg, 95% CI -71.68 to -44.51; 3 studies, 1086 participants; low-certainty evidence). We are uncertain whether HFNC improved short-term comfort when measured using comfort scores (MD 1.33, 95% CI 0.74 to 1.92; 2 studies, 258 participants) and responses to questionnaires (RR 1.30, 95% CI 1.10 to 1.53; 1 study, 168 participants); evidence for short-term comfort was very low certainty. No studies reported on nasal mucosa or skin trauma. AUTHORS' CONCLUSIONS: HFNC may lead to less treatment failure when compared to standard oxygen therapy, but probably makes little or no difference to treatment failure when compared to NIV or NIPPV. For most other review outcomes, we found no evidence of a difference in effect. However, the evidence was often of low or very low certainty. We found a large number of ongoing studies; including these in future updates could increase the certainty or may alter the direction of these effects.


ANTECEDENTES: Las cánulas nasales de alto flujo (HFNC) administran flujos elevados de una mezcla humedecida de aire y oxígeno a través de cánulas nasales de gran calibre y pueden ser útiles para proporcionar asistencia respiratoria a los adultos que presentan insuficiencia respiratoria aguda, o que tienen riesgo de presentarla, en la unidad de cuidados intensivos (UCI). Esta es una actualización de una versión anterior de la revisión. OBJETIVOS: Evaluar la eficacia de las HFNC en comparación con la oxigenoterapia estándar, o la ventilación no invasiva (VNI) o la ventilación con presión positiva no invasiva (VPPNI), para la asistencia respiratoria de adultos en la UCI. MÉTODOS DE BÚSQUEDA: Se realizaron búsquedas en CENTRAL, MEDLINE, Embase, CINAHL, Web of Science y en el Registro Cochrane de covid­19 (17 de abril de 2020), registros de ensayos clínicos (6 de abril de 2020) y se realizaron búsquedas de citas prospectivas y retrospectivas. CRITERIOS DE SELECCIÓN: Se incluyeron los estudios controlados aleatorizados (ECA) con un diseño de grupos paralelos o cruzados que compararon el uso de HFNC versus otro tipo de asistencia respiratoria no invasiva (oxigenoterapia estándar a través de cánulas nasales o mascarilla; o VNI o VPPNI que incluía la presión positiva continua en las vías respiratorias y la presión positiva de dos niveles en las vías respiratorias) en adultos ingresados en la UCI. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Se utilizaron los procedimientos metodológicos estándar previstos por la Colaboración Cochrane. RESULTADOS PRINCIPALES: Se incluyeron 31 estudios (22 de grupos paralelos y nueve de diseño cruzado) con 5136 participantes; esta actualización incluyó 20 estudios nuevos. Veintiún estudios compararon la HFNC con la oxigenoterapia estándar, y 13 compararon la HFNC con la VNI o la VPPNI; tres estudios incluyeron ambas comparaciones. Se encontraron 51 estudios en curso (con una estimación de 12 807 participantes) y 19 estudios en espera de clasificación en los que no fue posible determinar la información de elegibilidad del estudio. En 18 estudios el tratamiento se inició después de la extubación. En el resto de los estudios, los participantes no habían recibido de forma previa ventilación mecánica. HFNC versus oxigenoterapia estándar La HFNC podría conducir a un menor fracaso del tratamiento, según lo indicado por el escalamiento a tipos alternativos de oxigenoterapia (razón de riesgos [RR] 0,62; intervalo de confianza [IC] del 95%: 0,45 a 0,86; 15 estudios, 3044 participantes; evidencia de certeza baja). La HFNC probablemente da lugar a poca o ninguna diferencia en la mortalidad cuando se compara con la oxigenoterapia estándar (RR 0,96; IC del 95%: 0,82 a 1,11; 11 estudios, 2673 participantes; evidencia de certeza moderada). La HFNC probablemente da lugar a poca o ninguna diferencia con respecto a los casos de neumonía (RR 0,72; IC del 95%: 0,48 a 1,09; cuatro estudios, 1057 participantes; evidencia de certeza moderada), y no se sabe con certeza su efecto sobre la mucosa nasal ni el traumatismo cutáneo (RR 3,66; IC del 95%: 0,43 a 31,48; dos estudios, 617 participantes; evidencia de certeza muy baja). Se encontró evidencia de certeza baja de que la HFNC podría dar lugar a poca o ninguna diferencia en la duración de la estancia en la UCI según el tipo de asistencia respiratoria utilizada (DM 0,12 días; IC del 95%: ­0,03 a 0,27; siete estudios, 1014 participantes). No se sabe con certeza si la HFNC dio lugar a alguna diferencia en el cociente entre la presión parcial de oxígeno arterial y la fracción de oxígeno inspirado (PaO2/FiO2) en las primeras 24 horas del tratamiento (DM 10,34 mmHg; IC del 95%: ­17,31 a 38; cinco estudios, 600 participantes; evidencia de certeza muy baja). No se sabe con certeza si la HFNC dio lugar a alguna diferencia en la comodidad a corto plazo (DM 0,31; IC del 95%: ­0,60 a 1,22; cuatro estudios, 662 participantes, evidencia de certeza muy baja), o en la comodidad a largo plazo (DM 0,59; IC del 95%: ­2,29 a 3,47; dos estudios, 445 participantes, evidencia de certeza muy baja). HFNC versus VNI o VPPNI No se encontró evidencia de una diferencia entre los grupos en el fracaso del tratamiento cuando se utilizó la HFNC después de la extubación o sin el uso previo de ventilación mecánica (RR 0,98; IC del 95%: 0,78 a 1,22; cinco estudios, 1758 participantes; evidencia de certeza baja), ni en la mortalidad hospitalaria (RR 0,92; IC del 95%: 0,64 a 1,31; cinco estudios, 1758 participantes; evidencia de certeza baja). No hay certeza sobre el efecto del uso de la HFNC en la incidencia de la neumonía (RR 0,51; IC del 95%: 0,17 a 1,52; tres estudios, 1750 participantes; evidencia de certeza muy baja), y la HFNC podría dar lugar a poca o ninguna diferencia en el barotraumatismo (RR 1,15; IC del 95%: 0,42 a 3,14; un estudio, 830 participantes; evidencia de certeza baja). La HFNC podría suponer una diferencia escasa o nula en la duración de la estancia en la UCI (DM ­0,72 días; IC del 95%: ­2,85 a 1,42; dos estudios, 246 participantes; evidencia de certeza baja). El cociente PaO2/FiO2 podría ser menor hasta 24 horas con el uso de la HFNC (DM ­58,10 mmHg; IC del 95%: ­71,68 a ­44,51; tres estudios, 1086 participantes; evidencia de certeza baja). No se sabe si la HFNC mejoró la comodidad a corto plazo cuando se midió mediante puntuaciones de comodidad (DM 1,33; IC del 95%: 0,74 a 1,92; dos estudios, 258 participantes) y respuestas a cuestionarios (RR 1,30; IC del 95%: 1,10 a 1,53; un estudio, 168 participantes); la evidencia para la comodidad a corto plazo fue de certeza muy baja. Ningún estudio informó sobre la mucosa nasal ni el traumatismo cutáneo. CONCLUSIONES DE LOS AUTORES: La HFNC podría dar lugar a un menor fracaso del tratamiento en comparación con la oxigenoterapia estándar, pero probablemente suponga una escasa o nula diferencia en el fracaso del tratamiento en comparación con la VNI o la VPPNI. Para la mayoría de los demás desenlaces de la revisión, no se encontró evidencia de una diferencia en el efecto. Sin embargo, la certeza de la evidencia se consideró baja o muy baja. Se encontró un gran número de estudios en curso; incluirlos en futuras actualizaciones podría aumentar la certeza o podría alterar la dirección de estos efectos.


Asunto(s)
Cuidados Críticos/métodos , Intubación/métodos , Terapia por Inhalación de Oxígeno/métodos , Insuficiencia Respiratoria/terapia , Enfermedad Aguda , Adulto , Barotrauma/epidemiología , Sesgo , Mortalidad Hospitalaria , Humanos , Intubación/efectos adversos , Intubación/instrumentación , Tiempo de Internación , Máscaras , Mucosa Nasal/lesiones , Ventilación no Invasiva/métodos , Terapia por Inhalación de Oxígeno/efectos adversos , Terapia por Inhalación de Oxígeno/instrumentación , Medición de Resultados Informados por el Paciente , Neumonía/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial/efectos adversos , Insuficiencia del Tratamiento
4.
Cochrane Database Syst Rev ; 9: CD013708, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: covidwho-737854

RESUMEN

BACKGROUND: Supplemental oxygen is frequently administered to patients with acute respiratory distress syndrome (ARDS), including ARDS secondary to viral illness such as coronavirus disease 19 (COVID-19). An up-to-date understanding of how best to target this therapy (e.g. arterial partial pressure of oxygen (PaO2) or peripheral oxygen saturation (SpO2) aim) in these patients is urgently required. OBJECTIVES: To address how oxygen therapy should be targeted in adults with ARDS (particularly ARDS secondary to COVID-19 or other respiratory viruses) and requiring mechanical ventilation in an intensive care unit, and the impact oxygen therapy has on mortality, days ventilated, days of catecholamine use, requirement for renal replacement therapy, and quality of life. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, CENTRAL, MEDLINE, and Embase from inception to 15 May 2020 for ongoing or completed randomized controlled trials (RCTs). SELECTION CRITERIA: Two review authors independently assessed all records in accordance with standard Cochrane methodology for study selection. We included RCTs comparing supplemental oxygen administration (i.e. different target PaO2 or SpO2 ranges) in adults with ARDS and receiving mechanical ventilation in an intensive care setting. We excluded studies exploring oxygen administration in patients with different underlying diagnoses or those receiving non-invasive ventilation, high-flow nasal oxygen, or oxygen via facemask. DATA COLLECTION AND ANALYSIS: One review author performed data extraction, which a second review author checked. We assessed risk of bias in included studies using the Cochrane 'Risk of bias' tool. We used the GRADE approach to judge the certainty of the evidence for the following outcomes; mortality at longest follow-up, days ventilated, days of catecholamine use, and requirement for renal replacement therapy. MAIN RESULTS: We identified one completed RCT evaluating oxygen targets in patients with ARDS receiving mechanical ventilation in an intensive care setting. The study randomized 205 mechanically ventilated patients with ARDS to either conservative (PaO2 55 to 70 mmHg, or SpO2 88% to 92%) or liberal (PaO2 90 to 105 mmHg, or SpO2 ≥ 96%) oxygen therapy for seven days. Overall risk of bias was high (due to lack of blinding, small numbers of participants, and the trial stopping prematurely), and we assessed the certainty of the evidence as very low. The available data suggested that mortality at 90 days may be higher in those participants receiving a lower oxygen target (odds ratio (OR) 1.83, 95% confidence interval (CI) 1.03 to 3.27). There was no evidence of a difference between the lower and higher target groups in mean number of days ventilated (14.0, 95% CI 10.0 to 18.0 versus 14.5, 95% CI 11.8 to 17.1); number of days of catecholamine use (8.0, 95% CI 5.5 to 10.5 versus 7.2, 95% CI 5.9 to 8.4); or participants receiving renal replacement therapy (13.7%, 95% CI 5.8% to 21.6% versus 12.0%, 95% CI 5.0% to 19.1%). Quality of life was not reported. AUTHORS' CONCLUSIONS: We are very uncertain as to whether a higher or lower oxygen target is more beneficial in patients with ARDS and receiving mechanical ventilation in an intensive care setting. We identified only one RCT with a total of 205 participants exploring this question, and rated the risk of bias as high and the certainty of the findings as very low. Further well-conducted studies are urgently needed to increase the certainty of the findings reported here. This review should be updated when more evidence is available.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/complicaciones , Unidades de Cuidados Intensivos , Oxígeno/administración & dosificación , Neumonía Viral/complicaciones , Respiración Artificial , Síndrome de Dificultad Respiratoria/terapia , Sesgo , COVID-19 , Catecolaminas/uso terapéutico , Tratamiento Conservador , Humanos , Oportunidad Relativa , Pandemias , Terapia de Reemplazo Renal/estadística & datos numéricos , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2 , Autoimagen , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA